Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Am J Physiol Heart Circ Physiol ; 319(4): H793-H796, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-744896

ABSTRACT

The 60-kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis ensuring thus sufficient aerobic energy production. In pathological conditions, HSP60 can be translocated from the mitochondria and excreted from the cell. In turn, the extracellular HSP60 has a strong ability to trigger and enhance inflammatory response with marked proinflammatory cytokine induction, which is mainly mediated by Toll-like receptor binding. Previous studies have found increased circulating levels of HSP60 in hypertensive patients, as well as enhanced HSP60 expression and membrane translocation in the hypertrophic myocardium. These observations are of particular interest, since they could provide a possible pathophysiological explanation of the severe course and worse outcome of severe acute respiratory syndrome coronavirus 2 infection in hypertensive patients, repeatedly reported during the recent coronavirus disease 2019 (COVID-19) pandemic and related to hyperinflammatory response and cytokine storm development during the third phase of the disease. In this regard, pharmacological inhibition of HSP60 could attract attention to potentially ameliorate inappropriate inflammatory reaction in severe COVID-19 patients. Among HSP60 antagonizing drugs, mizoribine is the most intriguing, since it is clinically approved and exerts antiviral activity. However, this topic requires to be further scrutinized.


Subject(s)
Betacoronavirus/pathogenicity , Chaperonin 60/metabolism , Coronavirus Infections/metabolism , Hypertension/metabolism , Inflammation Mediators/metabolism , Pneumonia, Viral/metabolism , Animals , COVID-19 , Chaperonin 60/antagonists & inhibitors , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Host-Pathogen Interactions , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Immunosuppressive Agents/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Prognosis , Ribonucleosides/therapeutic use , SARS-CoV-2 , Signal Transduction , COVID-19 Drug Treatment
3.
Int J Biol Sci ; 16(13): 2382-2391, 2020.
Article in English | MEDLINE | ID: covidwho-689142

ABSTRACT

COVID-19 is a public health emergency that has rapidly spread to over 200 countries and regions, and no effective treatment has been established to date. Severe and critical cases have been associated with higher mortality due to acute respiratory distress syndrome (ARDS) and cytokine storm. Based on the novelty and recent emergence of COVID-19, no effective treatment regimen has been identified, thus prompting clinicians to engage in drug repurposing to address the immediate therapeutic need. This study focused on the molecular target angiotensin-converting enzyme 2 (ACE2) of SARS-CoV-2 and screened a group of ACE2 agonists by bioinformatics. Glucocorticoids are a type of ACE2 activator. We verified the efficacy of nine chemicals on regulating ACE2 expression in human GES-1, an upper digestive tract epithelial cell line, and THP-1, a human monocyte cell line, and found that several glucocorticoids imparted activating effects on ACE2 in both cell lines. The drugs triciribine and kinetin riboside activate ACE2 expression or inhibit IL-6 production in macrophages to some extent. In addition, we compared the efficacies of several glucocorticoids. Hydrocortisone showed the strongest effect on ACE2 activation, followed by prednisolone, dexamethasone, and methylprednisolone. We retrospectively analyzed the therapeutic efficacy of nine severe or critical patients from a cohort of 90 COVID-19 cases, who received medium to small doses of glucocorticoids from our integrated medical team in Wuhan. Seven out of nine patients revealed significant improvement in clinical parameters and chest CT images. This study provides experimental and clinical evidence that medium-to-low-dose glucocorticoids may play a protective role in the respiratory and digestive systems by activating ACE2 and suppressing cytokine storm.


Subject(s)
Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Interleukin-6/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Adenosine/therapeutic use , Adult , Aged , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Cell Line , Cell Line, Tumor , Coronavirus Infections/metabolism , Cytokines/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation, Neoplastic , Humans , Hydrocortisone/therapeutic use , Kinetin/therapeutic use , Macrophages/drug effects , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Retrospective Studies , Ribonucleosides/therapeutic use , SARS-CoV-2 , Transcriptome , COVID-19 Drug Treatment
4.
In Vivo ; 34(3 Suppl): 1567-1588, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-532631

ABSTRACT

BACKGROUND: On March 11, 2020, the World Health Organization (WHO) declared the outbreak of coronavirus disease (COVID-19) a pandemic. Since then, thousands of people have suffered and died, making the need for a treatment of severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) more crucial than ever. MATERIALS AND METHODS: The authors carried out a search in PubMed, ClinicalTrials.gov and New England Journal of Medicine (NEJM) for COVID-19 to provide information on the most promising treatments against SARS-CoV-2. RESULTS: Possible COVID-19 agents with promising efficacy and favorable safety profile were identified. The results support the combination of copper, N-acetylcysteine (NAC), colchicine and nitric oxide (NO) with candidate antiviral agents, remdesivir or EIDD-2801, as a treatment for patients positive for SARS-CoV-2. CONCLUSION: The authors propose to study the effects of the combination of copper, NAC, colchicine, NO and currently used experimental antiviral agents, remdesivir or EIDD-2801, as a potential treatment scheme for SARS-COV-2.


Subject(s)
Acetylcysteine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Colchicine/therapeutic use , Copper/therapeutic use , Coronavirus Infections/drug therapy , Nitric Oxide/therapeutic use , Pneumonia, Viral/drug therapy , Ribonucleosides/therapeutic use , Acetylcysteine/administration & dosage , Acetylcysteine/pharmacology , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Alanine/administration & dosage , Alanine/pharmacology , Alanine/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Autophagy/drug effects , Betacoronavirus/drug effects , Betacoronavirus/physiology , COVID-19 , Colchicine/administration & dosage , Colchicine/pharmacology , Copper/administration & dosage , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytidine/analogs & derivatives , Drug Synergism , Drug Therapy, Combination , Humans , Hydroxylamines , Inflammation , Nitric Oxide/administration & dosage , Nitric Oxide/pharmacology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Prodrugs/administration & dosage , Prodrugs/therapeutic use , Ribonucleosides/administration & dosage , Ribonucleosides/pharmacology , SARS-CoV-2 , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL